关键词:
深度学习
计算机辅助诊断
染色体核型分析
染色体分类
染色体分割
摘要:
染色体核型分析是细胞遗传学领域重要的实验技术,并逐步在包括生殖医学在内的诸多现代临床领域和科学研究方面得到广泛应用,但即使是经验丰富的细胞遗传学家也需要大量时间才能完成染色体核型分析。基于传统方法的染色体核型自动化分析方法精度较低,仍需要细胞遗传学家花费大量时间、精力校正。目前基于深度学习的染色体核型自动分析方法成果较多,但缺乏对该领域现状的总结、对未来发展的展望等。因此,本文对基于深度学习的染色体核型自动分析方法进行综述,归纳总结了现有的研究分析任务,挑选了具有代表性的方法并梳理解决方案,展望了未来发展方向。通过整理发现,基于深度学习的染色体核型自动化分析方法取得了很多成果,但仍存在一些问题。首先,已有的中文综述性工作仅集中于某一子领域或者调研不够全面和深入。其次,染色体核型分析任务与临床紧密结合,受各种因素制约,任务类型繁多,解决方案复杂,难以窥斑见豹。最后,现有方法主要集中于染色体分类和染色体分割任务,而诸如染色体计数、染色体预处理等任务研究成果较少,需要厘清问题,吸引更多研究人员关注。综上所述,基于深度学习的染色体核型自动分析方法仍有较大发展空间。