关键词:
                        
                            
                                网络表示学习
                            
                             
                                异质信息网络
                            
                             
                                网络分析
                            
                 
                
                
                
                        摘要:
网络表示学习旨在为网络中的组件(节点、边、子网络等)学习出低维的表征向量,使得这些向量能够在最大程度上保留组件在原网络中的特性。异质信息网络是由多种类型的节点、链接关系以及属性信息组成的网络,具有动态性、大规模和异质性等特点,在现实生活中普遍存在。融合多种异质信息进行网络表示学习,能在一定程度上解决数据稀疏问题,同时有助于训练出具有高区别力和推理能力的表征向量。但与此同时,也面临着如何有效处理复杂数据关系以及平衡异质信息的挑战。近年来,研究者们针对异质信息网络设计了不同的表示学习算法,在很大程度上推动了该领域的发展。针对这些算法,首先设计一个统一的分类框架,接着对各类别下的代表性算法进行概括介绍和比较,分析它们的时间复杂度和优缺点。此外,分类汇总了实验中的常用数据集。最后给出了该领域的挑战和未来可能的研究方向。