关键词:
电阻抗层析成像
卷积注意力机制
SE-ViT连接
多头交叉注意力模块
U型卷积网络
无损测量
摘要:
电阻抗层析成像(EIT)具有显著的可视化和非侵入性等特点,在工业和生物医学工程领域展现了其广阔的应用潜力。由于其逆问题存在高度非线性和病态性特点,导致了数值成像方法在空间分辨率上的局限性,尤其是在多相介质分布情况下,现有EIT技术在成像过程中出现边界失真和电导率误差,从而影响最终的成像精度。本文提出了一种基于卷积注意力机制的U型深度成像方法——MAT-UNet,将卷积块注意力模块(CBAM)与U-Net结构相结合,在特征提取与融合过程中嵌入卷积块注意力模块,以增强模型的注意力定向和特征表征能力,同时跳跃连接引入了压缩-激励(SE)注意力机制与视觉Transformer(ViT)来优化全局特征的学习,使用多头交叉注意力模块(MHCA)实现编码器与解码器的多尺度信息融合。MAT-UNet通过大量的仿真数据训练获得最优模型参数,并在多样化复杂形状和肺部仿真模型进行了实验验证。定量评估指标表明,该方法在重建图像中的均方根误差(RMSE)结果为2.3156,结构相似性指数(SSIM)结果为0.9437,可视化结果与真实分布和边界具有很好的一致性。实验结果表明,本文提出的MAT-UNet模型展现出良好的鲁棒性和泛化能力,相较于传统的单一卷积结构,集成Transformer结构提供了更精准的EIT图像重建效果,在无损测量与检测应用中存在很大的潜力和价值。