关键词:
铁皮石斛
拉曼光谱
卷积神经网络-长短期记忆神经网络
总黄酮含量
快速检测
摘要:
铁皮石斛具有很高的商业价值和营养价值,将云南文山、广西金秀、安徽霍山、浙江台州四个产地共130个样品作为研究样本,在785 nm激光下利用便携式拉曼光谱仪获得了铁皮石斛拉曼光谱,采用NaNO_(2)-Al(NO_(3))_(3)-NaOH比色法测定铁皮石斛总黄酮含量。以每条经过归一化后的拉曼光谱数据作为输入,利用Savitzky-Golay卷积平滑(SG平滑)、标准正态变量变换(SNV)、多元散射校正(MSC)等不同预处理方法对光谱数据进行处理,以偏最小二乘(PLS)、支持向量机(SVM)和卷积神经网络-长短期记忆神经网络(CNN-LSTM)模型作为比较,竞争自适应重加权采样(CARS)作为波长选择方法,对不同的机器学习模型进行比较研究。采用以下预测质量指标:校正集、测试集相关系数(R_(c)、R_(p)),校正集、测试集均方根误差(RMSEC、RMSEP),评价铁皮石斛总黄酮含量预测模型的性能。结果表明:光谱在经过SNV预处理之后,CNN-LSTM方法预测铁皮石斛总黄酮含量准确率最高,R_(c)、R_(p)分别为0.983和0.964,RMSEC、RMSEP分别为0.032和0.047 mg·g^(-1)。结合拉曼光谱建立的SNV-CNN-LSTM深度学习模型准确可靠,具有很强的鲁棒性,优于传统的机器学习模型(PLS、SVM)。利用拉曼光谱结合CNN-LSTM模型对铁皮石斛总黄酮含量进行预测,克服了传统的理化鉴别法的缺陷,具有快速无损的特点。该方法能对铁皮石斛的品质进行区分,并加快药食同源植物市场铁皮石斛产业化,构建自主品牌并增加其影响力,同时此项技术也可应用于消费者和市场监管部门。