关键词:
红花
采摘机器人
深度学习
YOLOv5s
识别成功率
摘要:
为实现农业复杂环境中红花的快速准确识别,提出了一种基于深度学习方法的改进YOLOv5s红花目标检测算法。在YOLOv5s基础上融入适配GPU的轻量Ghost模块,获得复杂度更低、网络推理速度更快的基线模型,将CBAM注意力机制嵌入基线模型,增强了小目标物在高频特征中的表现力,并通过建立一种基于边界框宽和高差值的Focal-EIoU损失函数,提高红花在不同遮挡情况下的识别率。最后,在并联式红花采摘机器人上开展红花识别试验,验证改进算法的可行性和可靠性。结果表明:改进后的YOLOv5s模型相较于原始模型在mAP值上提高了1.94个百分点,模型参数量和单幅图像检测速度分别为3.52 MB和0.06 s/幅,红花采摘机器人视觉系统的平均识别成功率可达89.92%。